Document Exchange Lite
Administrator’s Manual

What you need to know about DMX

The Document Exchange is a DotNetNuke module and is supplied with an SQL component so that it can store its data in either MS SQL Server, or SQL Express (the free ‘light’ version of SQL Server). The scope of the module is ‘portal’ wide, in other words: regardless of how many and where you place an instance of the DMX module, all DMX module instances within one portal share the same folder of documents. The advantage is that it is easier to share content at different places in your portal. The disadvantage is that you will need to take care of some settings so that they do not conflict between modules.

Security

The electronic files that may be uploaded by your users are not stored in the database itself, but in a directory on one of the server’s hard disks. Only the meta-data goes to the database. This brings us to the issue of security: how is security taken care of in DMX? Well, there are 3 levels of protection preventing unauthorized access to DMX content:

1. Files are renamed to a date/time stamp format to make it more difficult to see from the filename what the contents are (this also makes it easier to prevent name conflicts on the hard disk)

2. Files receive a new extension called ‘.resources’ to prevent direct download. The ‘resources’ extension is, by default, prohibited for download by IIS.

3. The DMX file directory may be placed outside of the web root. This will also make it impossible to reach files through IIS by direct url.

One point of attention is the setting where the document repository is located. It is important that for every module instance you set this identically throughout your portal. Not doing so may lead to failure of the system as DMX tries to find non-existent files that have been stored elsewhere.

Deletion of Items

The Document Exchange tries to protect its users from mistakes and offers various degrees of recoverability of deleted content. For a start DMX incorporates versioning so that a file is never overwritten on the hard-disk. Instead, whenever a user uploads a document as part of editing an existing entry, the old entry is saved as a previous version. This backup facility could potentially clog up your hard-disk, so you have the option of limiting the amount of versions that DMX will keep. Adding more versions will simply start deleting the oldest versions.

A second level of protection is the ‘soft delete’. If a user decides to delete an entry, it is actually just marked ‘deleted’ in the database, no more than that. This effectively shields it from view from regular users so it appears deleted. As administrator, however, you will see all entries, including the deleted ones. You may choose to ‘revive’ a deleted entry by going to its details screen and clicking the ‘undelete’ button.

Note that deleting a folder will delete all of its contents (which would otherwise be orphaned anyway). Reviving this same folder, however, does not immediately return all contained entries. They will need to be revived one at a time.

Finally, regarding deletion, the administrator has the ability to ‘hard delete’ entries. When viewing an entry’s details screen you will notice that next to the regular ‘delete’ button, there is a ‘hard delete’ button. This will erase any file associated with the entry and remove it from the database. As a result this entry is no longer recoverable. Use this button with care. It can also be used on whole folders (hard-erasing all entries contained therein), with potential far reaching consequences.
Uploading large documents

DMX uses a regular html control to upload files from the user’s computer to the server. This has the advantage that no special software components need to be installed on the hosting server (most upload components are COM+ components that are not trivial to install and maintain, in contrast with .Net components that are very easy to manage). The disadvantage is that uploading is limited to the capacities of the standard component (it is not very feature rich). It is important to note that on you .net server the uploading of documents is throttled at several places. From Microsoft’s support site
:

By default, ASP.NET only permits files that are 4,096 kilobytes (KB) (or 4 MB) or less to be uploaded to the Web server. To upload larger files, you must change the maxRequestLength parameter of the <httpRuntime> section in the Web.config file.

Note: When the maxRequestLength attribute is set in the Machine.config file and then a request is posted (for example, a file upload) that exceeds the value of maxRequestLength, a custom error page cannot be displayed. Instead, Microsoft Internet Explorer will display a "Cannot find server or DNS" error message.

If you want to change this setting for all of the computer and not just this ASP.NET application, you must modify the Machine.config file.
…

The Machine.config file is located in the \System Root\Microsoft.NET\Framework\Version Number\CONFIG directory.

In any case you should know that DMX does not limit upload size anywhere, nor does it perform a capacity check like the DotNetNuke core does. Instead it lets you upload indefinitely.
Caching

For performance’s sake the cache is used where possible. This includes the file types, and the portal security roles. If you find changes in your system do not show up in DMX, try to go to the options page and click ‘Clear Cache’. This resets most cache entries.

Main Settings

Specifying document repository

You need to set the location for the document repository (i.e. where files will be saved on the hard disk). By default DMX will create a directory ‘DMX’ under your portal directory. This means that files would be saved under the webroot possibly creating security vulnerabilities (see above). For extra security the repository can be located outside the Webroot but you need to set permissions correctly on the destination if you do (the worker process needs full access).

All files are stored (regardless of folder) under this directory. If you want to reduce the amount of files one could have in a directory, there is the possibility to specify the automatic generation of subdirectories based on the date. You can tell DMX to make a new directory every year, month, or even day (Files will be stored in ‘Repository Directory\Year\Month\Day\’ like ‘DMX\2005\01\26\’). This setting can be changed without affecting existing operation, so long as you don’t physically move files around.

Specifying the root

With the possibility to have more than one instance of DMX in your portal, it is useful to be able to set a root node for each module instance. It is important to realize that there is one (and only one) real folder tree per portal, and that starts with the non-existent Entry ID 0. Typically you will reserve one instance of DMX somewhere on an administration page which has this ‘absolute root’ as its root. Elsewhere you may specify that, for instance, the marketing department has an instance of DMX on a page for them, that starts in the ‘Marketing documents’ folder. This makes navigation easier for them and management easier for you as administrator.

Optionally you can even rename the root within the scope of the module instance. So if you created a folder ‘Marketing Dept’ under the root, you may specify that for the marketing people you have a DMX module that takes ‘Marketing Dept’ as its root, but that it is called ‘Marketing Documents’. This is the name they will see at the top of the module window and in the breadcrumb list. It is also the way to give the absolute root a name in the aforementioned module instance for the administrator.

Moderation of Content

By default all submissions to the document exchange are immediately visible to those with ‘viewing rights’. It is not uncommon that, before making any documentation public, content needs to be verified by someone other than the person uploading. This simple workflow can be activated in DMX by specifying an ‘approval role’ in the module options. The users that have been assigned this role will see all content to which they have viewing rights, regardless whether it has been approved or not
. They will recognize unapproved content by the unapproved status icon in the folder listings, or in the details screen by the appearance of the ‘approve’ button. Clicking the latter will approve the content.

Audit

In some cases an audit is required of the document exchange. If an audit email is specified then every transaction with the document exchange will prompt a notification email to be sent to this email address. Note that this email can be adapted to suit your needs.

Top-level Navigation and Start-up Screen

The buttons at the very top-right of the module window allows the user to navigate between the different main parts of the application: folders, categories, search, and subscriptions. These buttons can be hidden and the module can be made to start up from any one of those screens. In this way one could include a ‘search’ rendering of DMX in a section of the portal where search is concentrated.

Importing Existing Content

It is possible to import whole directories of documents into the document exchange. All files and sub folders will inherit the permissions from the folder into which they are imported. For this to work:

1. The directory to be imported should be located on one of the server’s hard disks (asp.net needs to access the files directly)

2. ASP.NET must have read access to the directory

Click the ‘import’ button found on the options screen. You will be taken to the import screen where you may specify a directory to import and a destination folder. The directory should be specified in standard Windows notation, i.e. ‘D:\Some Folder\Subfolder’. The next step is to ‘load’ the contents of this directory. This will show a list of all the files that can be found by DMX. You can still cancel the import process by clicking return at this point. Clicking import will create copies of all files that were found and recreate the directory structure as folders in DMX.
Maintenance: Cleaning Up Old Content

We have seen how files are not immediately erased from hard disk or database once an entry is deleted. The administrator can maintain the size of the repository by emptying this recycle bin and by deleting log entries. For each action one specifies the amount of days to preserve the contents
. This means that given the screen above, items that were deleted more than 30 days ago will be deleted when we click on ‘Delete Documents’. Similarly log entries older than 60 days will be deleted when we click on ‘Delete Log’.

Categorization

The categories
 are maintained by the administrator. These can be indefinitely nested to better structure your companies’ resources. Categories are very powerful and provide a way to ‘matrix’ your information (i.e. to provide multiple ways to structure contents), compared to folders that only singularly structure information. The edit screen for categories is fairly straightforward and can be found under the ‘categories’ button on the options screen.

File Types

Before we mentioned that an entry can be of three types: a folder, a file, or a hyperlink. Although true, this can be extended. In fact DMX stores for every entry in its database an entry type key so that it knows what it can do with it. This key is a string of terms separated by dots much like namespaces in programming, with the more general terms on the left and more specific terms on the right. So an acrobat file, for instance, is known as an entry of type “File.Adobe.Acrobat”, and a folder is simply “Folder”. You can see that this way we can define more types later on as we need to extend the functionality of the system.

For the types that have general applicability within the core DMX we can tune appearance and behaviour. Most notably we can define:

· To which file extensions the type applies

· Which icons are used to display

· Whether to view an item within a web browser, or to push the browser to download the item when the item’s icon is clicked.

· The mime-type to send to the browser when sending the file for viewing

Note that there are other settings for file types such as setting a control to load, but these settings are meant to tune interaction with add-ons to DMX. For now we will concentrate on the aspects mentioned above.

Type name

The base type is fixed in the DMX core and can be only one of ‘File’, ‘Collection’ (internal name of Folder), or ‘Hyperlink’. For the time being we will only concern ourselves with the base type ‘File’ (the other base types have no possibility for specific tuning in the core DMX). The specific type is added to this and should be some descriptive combination of terms that narrow down the entry type. It is up to you to choose a good key.
File extensions

Specify a semi-colon separated list of extensions (without the period). When someone uploads a document, the extension is used to find a file type that matches. This is also used during bulk import (both admin and using zip file)

Mime type

Browsers use mime-types to determine the nature of the data that is sent to them. You can quite easily find resources on the internet describing the various possibilities for this setting. The default type for binary data is ‘application/octet-stream’ and will most likely cause the browser to prompt the user to save the incoming data. If, however, it receives data as ‘image/jpeg’, then it will try to display that as a jpeg picture.

Default action

There are two ways in which a user accesses a file that is on the server’s hard disk. Either through clicking ‘download’ on the details screen (or the download icon on the listing screen), or by clicking the file icon on one of the folder lists. Clicking the file’s own icon will prompt DMX so send the file to the user’s browser. This can be done either as an attachment, or as contents of a page to display. The first will lead to a download prompt being displayed; the second will lead the browser to attempt to display the file (by optionally loading a plugin, such as the acrobat reader for instance).

Note that browser behaviour is notoriously erratic when trying to get them to display items. It varies wildly by brand and version. There are numerous resources on the net about this, and many many more fierce discussions about which browser does this best.

Icons

Nice icons are the icing on the cake. You can specify which icons to use for the file type. There are two sizes: 16 by 16 pixels, and 32 by 32 pixels. The first is used in file listings, the latter is used at the top of the details screen.

Control

By default the control to load when viewing a file should be set to “Bring2mind.DMX/ViewDetails.ascx”. It is recommended to leave it to that. When you also have add-ons to DMX on your site, you might opt to show another screen when viewing a particular item type.
Custom Attributes

No system will perfectly match every situation of your daily practice. Most emails that we receive demand custom adaptations for specific markets. An example of such a specific setting is in a medical practice. There, the patient number (an anonymous ID) is a very important attribute in organizing information. Although DMX would be very useful in medical practice it would need to incorporate the patient number as an optional attribute for every entry in the system.

Rather than offering a fixed (like 5 or 10) number of ‘user defined’ attributes, DMX offers the possibility to extend endlessly by defining custom attributes. Custom attributes are just like the regular attributes like author and description. They are backed up when new versions are created, they can be searched, and they can be displayed in folder listings. Custom attributes are set on a per portal basis. Be aware that removing a custom attribute from a portal will delete all values of this custom attribute throughout all document folders of that portal.

Type

The attribute is stored in the database as a string. To help users, though, it is possible to specify what kind of input you expect. DMX will help by putting a client-side validation on the user’s browser so he/she cannot submit unless the value is of the specified type.
Applies to

When defining a custom attribute you can specify to which types of entry (see ‘file types’, above) this attribute applies. This is done in a progressive way where more specific entry types inherit the attribute kinds of their parents. So if you’d like the attribute to show up for all file types you add ‘File’. Leaving this blank will make this attribute applicable to all entry types.

View Order
For some applications it may be desirable to show the custom attributes in a particular order. This is possible by specifying the ordinal position of the attribute. The list will be renumbered when the attribute is updated.

Extensions

It is outside of the scope of this document to discuss tuning add-ons at this point. This will be discussed elsewhere. If you only have the core DMX it is best to leave the extensions as they are.

Changing the file lists

The file lists that are used in viewing a folder, a category, or your subscriptions, can be tuned per screen, per culture, and per portal. This is done through the regular localization features of DNN. The columns are defined by a string called ‘ColumnList.Text’ (this can be found in the resources for the screens ‘ViewFolder’, ‘ViewCategory’, and ‘ViewSubscriptions’ under DesktopModules/Bring2mind.DMX/App_LocalResources). The column descriptions in this list are separated by a semicolon. The default column string for the file lists found when viewing a folder, for example, is:

DownloadFileIcon|View|24|||True||~/DesktopModules/Bring2mind.DMX/images/View.gif|View Item|;Description|Title||||True||||;StatusLocked||24||||||Locked|File;StatusDeleted||24||||||Deleted|;StatusApproved||24||||||Not Approved|;ActionDownload||24||||||Download|File;ActionJump||24||||||Jump|Hyperlink;ActionJumpNew||24||||||Jump in new window|Hyperlink;LastModified|Last Modified|100||{0:d}||LastModified|||;Author|Author|150||||Author|||File;DateSubmitted|Created|70||{0:d}||DateSubmitted|||;FileSize|Size|70||||FileSize|||File

Note that there are no carriage returns despite formatting on this page.

Every column is made up of 10 variables, separated by a pipe symbol (i.e. ‘|’):

1. Name/identifier
These can be:
a. Regular column names from the Entries table ("Author", "Keywords", "OriginalFileName", "Remarks", "Version", "DateSubmitted", "LastModified", "Description")
b. The name of the parent folder (“Folder”)
c. Status icon ("StatusDeleted", "StatusLocked", "StatusApproved", “StatusPrivate”)
d. Action icons ("DownloadFileIcon", "ActionDownload", "ActionJump", "ActionJumpNew")
e. “FileCheckBox". This can be used by extensions to allow multiple file selection
f. "FileSize"
g. One of the names of custom attributes.

2. Title
The text to display in the column header

3. Width in pixels
If left empty it is left to the browser to decide (i.e. it auto-adjusts)

4. Css class

5. Template
This is normally used with date fields. Refer to .net resources to find out more about template strings for columns (e.g. ‘{0:d}’ will display a short date).

6. Show link or not
Make the column link to further details screen of the entry.

7. Sort expression
For regular columns of the Entries table the file list can be resorted according to that field. Supply the name of the field here and the column header will be clickable to resort the list.

8. Header image url

9. Alternate text for icon
For the icon displayed in the list.

10. Applies to entry type …
you can decide to show or hide the contents of this field according to the entry type. Specify ‘File’ to make it apply only to file types.
It is probably clear from the above that adjusting the column structure is not for the feint of heart. My suggestion is to try one at a time. The mechanism we use allows you to make a listing for each portal and each culture therein, giving an almost infinite flexibility on rendering.

Notification Mechanism

Notification is the mechanism whereby emails get sent to users that are ‘subsscribed’ to content to tell them something has happened to that content that they should be aware of. This feature is strongly tied to logging at a technical level. In fact, any action that leads DMX to write to the log can be used to send out a notification. When and what to send is managed through regular DNN localization, so that this can be tuned per portal, per culture. The file that governs the notification content and triggers is:

DesktopModules/Bring2mind.DMX/App_LocalResources/Logging.ascx.resx

In it you will find for every type of notification the subject and body message. Next to this you will see a list of log actions, how to describe them, and which message to send when the logging event occurs. If the latter is left blank, no notification is sent (as you will notice is the case in case of download, (un)lock, and (un)subscribe.

Please follow naming conventions when adjusting this file. An email gets a specific key like ‘EMAIL_DMX_NOTIFICATION’. This then gets 2 entries in this file: key_SUBJECT, and key_BODY for the two parts necessary for the email
. The logging action that needs to be followed by this notification should be pointed to that by filling in the Action.Notification value with the email key.

Specific email fields

DotNetNuke has an inbuilt mechanism to allow parameters to be passed to these messages so that they can have dynamic content. In our case we would be very interested to at least include the name of the document, the date/time it was altered, who made the change, etc. This is done by including particular keys in the text in the form [Object:Property]. For instance [User:FullName] will be replaced by the full name of the currently logged in person (i.e. the person initiating this message). For details of standard items you can refer to DotNetNuke resources. The DMX specific entries are:

	[Custom:0]
	Name of the entry

	[Custom:1]
	Author

	[Custom:2]
	Long date string

	[Custom:3]
	Long time string

	[Custom:4]
	The Action.Phrase value taken from this file

	[Custom:5]
	Url to the details screen of this document

Style: adjusting DMX through CSS

Many elements in document management have been associated with styles. This allows DNN skin designers to make sure DMX will assume the look and feel of the rest of the site.

· DMX_categories, level1, level2, level3 etc
Rendering used when displaying categories in a structured list (e.g. as they are shown on the entry edit screen). The levelX corresponds to the depth level of the category.

· DMX_CategoryBox
Used for a panel where one can add/edit categories (only visible for administrators)

· DMX_Breadcrumbs

· DMX_NB_Button
Used for the buttons on the top-navigation bar at the top-right of window

· DMX_Header
Used for the status box holding buttons, quick-search, etc.

· DMX_Status
Used for a status text at the bottom of the screen (as used on entry edit screen)

· FileGrid_X
Various styles preceded by FileGrid_ are meant for the design of the file listings on ViewFolder, ViewCategory, and ViewSubscriptions.

· DetailsGrid_X
Various styles preceded by DetailsGrid_ are meant for the design of the details grid as we find it on ViewDetails

These styles can be overridden in the skin.css stylesheet to change the appearance of DMX.

� http://support.microsoft.com/default.aspx?scid=kb;en-us;323246

� Administrators, as super-users, can see all content, so also non-approved items.

� The number of days is not a setting which is stored somewhere. Rather it is a variable for the current operation since there is no scheduled cleanup of the document exchange.

� Technical note: the relationship between entries and categories is not through a link table. The entry has a string value holding all category references. This means that deleting a category will orphan existing references. Although this has been taken care of in the code of DMX, it is still advisable to avoid as much as possible the deleting of categories.

� Note that there are two more emails in the list: EMAIL_DMX_NOTIFICATION_SUBSCRIBE_X and EMAIL_DMX_NOTIFICATION_UNSUBSCRIBE_X. These serve a special purpose (to notify someone when the administrator has lifted their subscription for instance) and should not be removed (of course they can be edited).

